[Solomonov Seminar] 53. Solomonov seminar
Marko Grobelnik
marko.grobelnik@ijs.si
Tue, 18 Sep 2001 23:26:53 +0200
Vabim vas na 53. Solomonov seminar, ki bo
IZJEMOMA (!!!) v ponedeljek (24.9.2001)
ob 11h v fizikalnem seminarju IJS (glavna stavba IJS, levo).
Seminarju bo sledila ob 14h dvourna delavnica, kjer bo
tematika predstavljena nekoliko obsirneje in podrobneje.
Za udelezbo na delavnici bi prosil, da mi posljeto prijavo (email).
Na tokratnem seminarju bomo gostili prof. Luisa Pinedo
iz Mehike, ki se ukvarja s t.i. "sklepanjem z diagrami".
Diagramatic reasoning je sklepanje na osnovi diagramov,
dokaj novo, majhno in sveze podrocje v UI. Gre za to, da
npr. izrek dokazes vizualno, s sliko/risbo/diagramom,
namesto suhoparno z matematicnimi formulami. Najbolj
znani primeri so elegantni dokazi Evklidovega izreka
z diagramom, ko clovek takoj VIDI, da izrek drzi, namesto
dolgovezne formalne izpeljave. Taki diagramatski dokazi
navadno ne veljajo kot matematicni dokazi in so koristni le kot
intuitivna ilustracija. Vcasih pa imajo celo veljavo v najstrozjem
matematicnem pomenu. Vprasanje je kdaj? Vprasanje je tudi, kako
to realizirati racunalnisko? S temi se ukvarja Pineda.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abstraction, Visualization and Graphical Proof
Luis A. Pineda (National Univ. of Mexico)
In this workshop we explore the representational properties and
inferential processes involved in diagrammatic proofs and valid
graphical reasoning schemes. As an antecedent, the properties of
analogical and propositional knowledge representation schemes are
reviewed, and a brief introduction to the imagery debate of cognitive
psychology and AI is presented. Then, the properties of analogical
representations are reviewed from the perspective of standard Turing
Machines and, following the architecture of the Whisper System (Funt,
1980), the structure of a "Diagrammatic Turing Machine" is proposed.
We also review the notion of interpretation change in ambiguous of
pictures.
Next, we explore whether diagrams can express abstract information. We
present and discuss the theory of the Specificity of Graphics
(Stenning and Oberlander, 1995) in which representational systems are
classified as MARS, LARS or UARS, according to the kind of
abstractions they are able to express (Minimal, Limited and Unlimited,
respectively). S&O argue that diagrams are LARS and can be interpreted
effectively with limited computational resources. However, we observe
that diagrams need to be able to express full abstractions if theorems
and proofs can be diagrammatical at all! To address this concern, we
propose an alternative for S&O theory. We introduce the notions of
universal key and Diagrammatic Unlimited Abstraction Representation
Systems (DUARS). Universal keys are general statements about the
notation of a representational system and DUARS permit the expression
of theorems to diagrams. The theory is applied to the study of a
diagrammatic proof of the theorem of the sum of the first n odd
numbers.
Finally, we study the relation between the diagrammatic proofs and
learning, and we proposed a reasoning scheme in which theorems are
induced out of the basic notation of a representational systems and
the properties of the representational medium. We apply the final
theory to understand a purely diagrammatic proof of the Theorem of
Pythagoras.