OPOMNIK: IJS KOLOKVIJ, sreda, 19. 12. 2018, ob 13. uri, prof. dr. Stéphane Mangin

Natasa Gosevac Natasa.Gosevac at ijs.si
Tue Dec 18 10:43:17 CET 2018


Vabimo vas na 5. predavanje iz sklopa "Kolokviji na IJS" v letu 2018/19, ki
bo v sredo, 19. decembra 2018, ob 13. uri v Veliki predavalnici Instituta
>Jožef Stefan<  na Jamovi cesti 39 v Ljubljani. Napovednik predavanja
najdete tudi na naslovu http://www.ijs.si/ijsw/Koledar_prireditev, posnetke
preteklih predavanj pa na http://videolectures.net/kolokviji_ijs. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

prof. dr. Stéphane Mangin

Institut Jean Lamour, UMR CNRS 7198 - Université de Lorraine, Nancy,
Francija

 

Materiali za magnetno zapisovanje s svetlobo

V preteklih petnajstih letih se z možnostjo manipulacije magnetizacije brez
zunanjega magnetnega polja ukvarja vse več raziskovalcev. Od odkritja
preklopa zaradi navora spinskega toka [1], učinka električnih polj na
magnetne naprave [2] in preklopa magnetizacije s femto- in pikosekundnimi
sunkovnimi laserji [3-5] je postala manipulacija magnetizacije na
ultrakratkih časih fundamentalen izziv z implikacijami za magnetno
shranjevanje podatkov. Tu bomo predstavili optično manipulacije
magnetizacije skrbno pripravljenih materialov in naprav. Pokazali bomo, da
je mogoče doseči preklop magnetizacije s polarizirano svetlobo tako v zelo
posebnih zlitinah redkih zemelj in prehodnih kovin [3,4] kot v vrsti
materialov, kot so zlitine ter večplastne in kompleksne strukture [5].
Posebej se bomo dotaknili optičnega preklopa magnetizacije v feromagnetni
tanki plasti in v granularnih snoveh. Prav ti materiali predstavljajo preboj
na področju uporabe, saj so kompatibilni s spintronskimi elementi za
shranjevanje podatkov, spomin in logiko. Nadalje bomo pokazali, da je mogoče
ustvariti femtosekundni sunek elektronov, ki prav tako pripelje do preklopa
magnetizacije [6,7]. Ta raziskava nadalje nudi pogled v fundamentalne
mehanizme, ki vodijo proces. 

[1] J. Katine et al., Phys. Rev. Lett. 84, 3149 (2000).

[2] H. Ohno et al., Nature 408, 944 (2000). 

[3] C. D. Stanciu et al., Phys. Rev. Lett. 99, 047601 (2007).

[4] S. Mangin et al., Nat. Mater. 13, 286 (2014). 

[5] C.-H. Lambert et al., Science 345, 1337 (2014).

[6] Y. Xu et al., Adv. Mater. 29, 42 1703474 (2017).

[7] S. Iihama et al., Adv. Mater. 1804004 (2018).

Predavanje bo v angleščini.

Lepo vabljeni!

*****




We invite you to the 5th Institute colloquium in the academic year 2018/19.
The colloquium will be held on Wednesday December 19, 2018 at 1 PM in the
main Institute lecture hall, Jamova 39, Ljubljana. To read the abstract
click  http://www.ijs.si/ijsw/Koledar_prireditev. Past colloquia are posted

on  http://videolectures.net/kolokviji_ijs.

 

********************************************

Professor Stéphane Mangin

Institut Jean Lamour, UMR CNRS 7198 - Université de Lorraine, Nancy, France

 

Engineering materials for all optical magnetic recording

 

The possibilities of manipulating magnetization without any applied magnetic
field have attracted the growing attention of researchers during the last
fifteen years. From the discovery of spin transfer torque switching [1], the
effect of electric fields on magnetic devices [2] to magnetization switching
using femto- or picosecond pulsed lasers [3-5] the manipulation of
magnetization at ultra-short time scales has become a fundamentally
challenging topic with implications for magnetic data storage. Here we
demonstrate optical manipulation of the magnetization of carefully
engineered magnetic materials and devices. We prove that polarized light
induced magnetization reversal can be observed not only in very particular
rare-earth transition-metal alloys [3,4] but also in a variety of materials
(alloys, multilayers and complex structures) [5]. In particular we show
optical magnetization reversal for ferromagnetic thin film and granular
media. This is a breakthrough for application since it provides materials
"compatible" with spintronic applications for data storage, memories and
logic. Furthermore we show that it is possible to create femtosecond
electron pulse which also induces magnetisation reversal [6,7].  In addition
this study offers valuables information to understand the underlying
fundamental mechanisms involved.

 

[1] J. Katine et al., Phys. Rev. Lett. 84, 3149 (2000).

[2] H. Ohno et al., Nature 408, 944 (2000). 

[3] C. D. Stanciu et al., Phys. Rev. Lett. 99, 047601 (2007).

[4] S. Mangin et al., Nat. Mater. 13, 286 (2014). 

[5] C.-H. Lambert et al., Science 345, 1337 (2014).

[6] Y. Xu et al., Adv. Mater. 29, 42 1703474 (2017).

[7] S. Iihama et al., Adv. Mater. 1804004 (2018).

 

Cordially invited!

 

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://mailman.ijs.si/pipermail/kolokvij-ijs/attachments/20181218/81617fe6/attachment.html>


More information about the kolokvij-ijs mailing list